Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1101420190510010034
Korean Journal of Clinical Laboratory Science
2019 Volume.51 No. 1 p.34 ~ p.41
Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation
Kwon Hyuk-Woo

Shin Jung-Hae
Park Chang-Eun
Lee Dong-Ha
Abstract
Platelet aggregation is essential for the formation of a hemostatic plug in the case of blood vessel damage. On the other hand, excessive platelet aggregation may cause cardiovascular disorders, such as thrombosis, atherosclerosis, and myocardial infarction. Scopoletin, which found in the root of plants in the genus Scopolia or Artemisia, has anti-coagulation and anti-malaria effects. This study examined the effects of scopoletin on human platelet aggregation induced by collagen. Scopoletin had anti-platelet effects via the down-regulation of thromboxane A2 (TXA2) production and intracellular Ca2+ mobilization ([Ca2+]i), which are aggregation-inducing molecules produced in activated platelets. On the other hand, scopoletin increased both the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels, which are known as intracellular Ca2+-antagonists and aggregation-inhibiting molecules. In particular, scopoletin increased the potently cAMP level more than cGMP, which led to suppressed fibrinogen binding to ¥áIIb/¥â3 in collagen-induced human platelet aggregation. In addition, scopoletin inhibited collagen-elevated adenosine triphosphate (ATP) release in a dose-dependent manner. The results suggest that aggregation amplification through granule secretion is inhibited by scopoletin. Therefore, scopoletin has potent anti-platelet effects and may have potential for the prevention of platelet-derived vascular diseases.
KEYWORD
Cyclic nucleotide, Intracellular Ca2+, Scopoletin, Thromboxane A2
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)